Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
NAR Genom Bioinform ; 3(4): lqab090, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1532532

ABSTRACT

Extracting and processing information from documents is of great importance as lots of experimental results and findings are stored in local files. Therefore, extracting and analyzing biomedical terms from such files in an automated way is absolutely necessary. In this article, we present OnTheFly2.0, a web application for extracting biomedical entities from individual files such as plain texts, office documents, PDF files or images. OnTheFly2.0 can generate informative summaries in popup windows containing knowledge related to the identified terms along with links to various databases. It uses the EXTRACT tagging service to perform named entity recognition (NER) for genes/proteins, chemical compounds, organisms, tissues, environments, diseases, phenotypes and gene ontology terms. Multiple files can be analyzed, whereas identified terms such as proteins or genes can be explored through functional enrichment analysis or be associated with diseases and PubMed entries. Finally, protein-protein and protein-chemical networks can be generated with the use of STRING and STITCH services. To demonstrate its capacity for knowledge discovery, we interrogated published meta-analyses of clinical biomarkers of severe COVID-19 and uncovered inflammatory and senescence pathways that impact disease pathogenesis. OnTheFly2.0 currently supports 197 species and is available at http://bib.fleming.gr:3838/OnTheFly/ and http://onthefly.pavlopouloslab.info.

2.
Nucleic Acids Res ; 49(W1): W36-W45, 2021 07 02.
Article in English | MEDLINE | ID: covidwho-1387964

ABSTRACT

Efficient integration and visualization of heterogeneous biomedical information in a single view is a key challenge. In this study, we present Arena3Dweb, the first, fully interactive and dependency-free, web application which allows the visualization of multilayered graphs in 3D space. With Arena3Dweb, users can integrate multiple networks in a single view along with their intra- and inter-layer connections. For clearer and more informative views, users can choose between a plethora of layout algorithms and apply them on a set of selected layers either individually or in combination. Users can align networks and highlight node topological features, whereas each layer as well as the whole scene can be translated, rotated and scaled in 3D space. User-selected edge colors can be used to highlight important paths, while node positioning, coloring and resizing can be adjusted on-the-fly. In its current version, Arena3Dweb supports weighted and unweighted undirected graphs and is written in R, Shiny and JavaScript. We demonstrate the functionality of Arena3Dweb using two different use-case scenarios; one regarding drug repurposing for SARS-CoV-2 and one related to GPCR signaling pathways implicated in melanoma. Arena3Dweb is available at http://bib.fleming.gr:3838/Arena3D or http://bib.fleming.gr/Arena3D.


Subject(s)
Algorithms , Data Visualization , Internet , Protein Interaction Maps , Software , COVID-19/metabolism , Color , Drug Repositioning , Humans , Melanoma/drug therapy , Melanoma/metabolism , Programming Languages , Receptors, Endothelin/metabolism , SARS-CoV-2/metabolism , Signal Transduction , COVID-19 Drug Treatment
3.
Cardiovasc Res ; 117(8): 1823-1840, 2021 07 07.
Article in English | MEDLINE | ID: covidwho-1174897

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has been as unprecedented as unexpected, affecting more than 105 million people worldwide as of 8 February 2020 and causing more than 2.3 million deaths according to the World Health Organization (WHO). Not only affecting the lungs but also provoking acute respiratory distress, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is able to infect multiple cell types including cardiac and vascular cells. Hence a significant proportion of infected patients develop cardiac events, such as arrhythmias and heart failure. Patients with cardiovascular comorbidities are at highest risk of cardiac death. To face the pandemic and limit its burden, health authorities have launched several fast-track calls for research projects aiming to develop rapid strategies to combat the disease, as well as longer-term projects to prepare for the future. Biomarkers have the possibility to aid in clinical decision-making and tailoring healthcare in order to improve patient quality of life. The biomarker potential of circulating RNAs has been recognized in several disease conditions, including cardiovascular disease. RNA biomarkers may be useful in the current COVID-19 situation. The discovery, validation, and marketing of novel biomarkers, including RNA biomarkers, require multi-centre studies by large and interdisciplinary collaborative networks, involving both the academia and the industry. Here, members of the EU-CardioRNA COST Action CA17129 summarize the current knowledge about the strain that COVID-19 places on the cardiovascular system and discuss how RNA biomarkers can aid to limit this burden. They present the benefits and challenges of the discovery of novel RNA biomarkers, the need for networking efforts, and the added value of artificial intelligence to achieve reliable advances.


Subject(s)
Artificial Intelligence/economics , Biomarkers/analysis , COVID-19/diagnosis , RNA/genetics , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Cardiovascular System/virology , Humans , Quality of Life , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL